MathNet.Numerics.Signed 3.14.0-beta01

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0.

Showing the top 20 packages that depend on MathNet.Numerics.Signed.

Packages Downloads
NPOI
.NET port of Apache POI
16
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
8
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
10
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
16
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
18

FFT: MKL native provider backend. FFT: 2D and multi-dimensional FFT (only supported by MKL provider, managed provider pending). FFT: real conjugate-even FFT (only leveraging symmetry in MKL provider). FFT: managed provider significantly faster on x64. Provider Control: separate Control classes for LA and FFT Providers. Provider Control: avoid internal exceptions on provider discovery. Linear Algebra: dot-power on vectors and matrices, supporting native providers. Linear Algebra: matrix Moore-Penrose pseudo-inverse (SVD backed). Root Finding: extend zero-crossing bracketing in derivative-free algorithms. Window: periodic versions of Hamming, Hann, Cosine and Lanczos windows. Special Functions: more robust GammaLowerRegularizedInv (and Gamma.InvCDF). BUG: ODE Solver: fix bug in Runge-Kutta second order routine ~Ksero

This package has no dependencies.

Version Downloads Last updated
5.0.0 24 12/12/2022
5.0.0-beta02 4 11/29/2024
5.0.0-beta01 12 05/27/2024
5.0.0-alpha16 6 05/27/2024
5.0.0-alpha15 13 05/27/2024
5.0.0-alpha14 5 05/27/2024
5.0.0-alpha11 7 05/27/2024
5.0.0-alpha10 10 05/27/2024
5.0.0-alpha09 6 05/27/2024
5.0.0-alpha08 10 05/27/2024
5.0.0-alpha07 8 05/27/2024
5.0.0-alpha06 12 05/27/2024
5.0.0-alpha05 9 05/27/2024
5.0.0-alpha04 12 05/27/2024
5.0.0-alpha03 10 05/27/2024
5.0.0-alpha02 5 12/07/2024
5.0.0-alpha01 6 12/02/2024
4.15.0 19 05/10/2023
4.14.0 10 05/27/2024
4.13.0 8 05/27/2024
4.12.0 12 05/27/2024
4.11.0 11 05/27/2024
4.10.0 8 05/27/2024
4.9.1 12 05/27/2024
4.9.0 6 12/02/2024
4.8.1 16 05/27/2024
4.8.0 12 05/27/2024
4.8.0-beta02 13 05/27/2024
4.8.0-beta01 8 05/27/2024
4.7.0 11 05/27/2024
4.6.0 15 05/27/2024
4.5.0 8 05/27/2024
4.4.1 10 05/27/2024
3.20.2 8 05/27/2024
3.20.1 11 05/27/2024
3.20.0 8 05/27/2024
3.20.0-beta01 7 05/27/2024
3.19.0 8 05/27/2024
3.18.0 7 05/27/2024
3.17.0 10 05/27/2024
3.16.0 10 05/27/2024
3.15.0 7 12/02/2024
3.14.0-beta03 7 05/27/2024
3.14.0-beta02 7 05/27/2024
3.14.0-beta01 8 05/27/2024
3.13.1 12 05/27/2024
3.13.0 6 05/27/2024
3.12.0 12 05/27/2024
3.11.1 9 05/27/2024
3.11.0 9 05/27/2024
3.10.0 8 05/27/2024
3.9.0 8 05/27/2024
3.8.0 11 05/27/2024
3.7.1 6 12/02/2024
3.7.0 10 05/17/2024
3.6.0 8 05/27/2024
3.5.0 9 05/27/2024
3.4.0 5 05/27/2024
3.3.0 6 05/27/2024
3.3.0-beta2 9 05/27/2024
3.3.0-beta1 10 05/27/2024
3.2.3 10 05/27/2024
3.2.2 11 05/27/2024
3.2.1 8 05/27/2024
3.2.0 10 05/27/2024
3.1.0 8 05/27/2024
3.0.2 12 05/27/2024
3.0.1 10 05/27/2024
3.0.0 12 05/27/2024
3.0.0-beta05 12 05/27/2024
3.0.0-beta04 7 05/27/2024
3.0.0-beta03 7 05/27/2024
3.0.0-beta02 8 05/27/2024
3.0.0-beta01 10 05/27/2024
3.0.0-alpha9 12 05/27/2024
3.0.0-alpha8 8 05/27/2024
3.0.0-alpha7 8 05/27/2024
3.0.0-alpha6 7 05/27/2024
3.0.0-alpha5 9 05/27/2024
2.6.1 12 05/27/2024
2.6.0 10 05/27/2024
2.5.0 12 05/27/2024
2.4.0 10 05/27/2024
2.3.0 15 05/27/2024
2.2.1 10 05/27/2024