MathNet.Numerics.Signed 3.14.0-beta01

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0.

Showing the top 20 packages that depend on MathNet.Numerics.Signed.

Packages Downloads
NPOI
.NET port of Apache POI
25
NPOI
.NET port of Apache POI
33
NPOI
.NET port of Apache POI
39
NPOI
.NET port of Apache POI
69
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
28
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
34
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
36
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
41
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
52
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
61

FFT: MKL native provider backend. FFT: 2D and multi-dimensional FFT (only supported by MKL provider, managed provider pending). FFT: real conjugate-even FFT (only leveraging symmetry in MKL provider). FFT: managed provider significantly faster on x64. Provider Control: separate Control classes for LA and FFT Providers. Provider Control: avoid internal exceptions on provider discovery. Linear Algebra: dot-power on vectors and matrices, supporting native providers. Linear Algebra: matrix Moore-Penrose pseudo-inverse (SVD backed). Root Finding: extend zero-crossing bracketing in derivative-free algorithms. Window: periodic versions of Hamming, Hann, Cosine and Lanczos windows. Special Functions: more robust GammaLowerRegularizedInv (and Gamma.InvCDF). BUG: ODE Solver: fix bug in Runge-Kutta second order routine ~Ksero

This package has no dependencies.

Version Downloads Last updated
5.0.0 55 12/12/2022
5.0.0-beta02 24 11/29/2024
5.0.0-beta01 33 05/27/2024
5.0.0-alpha16 23 05/27/2024
5.0.0-alpha15 37 05/27/2024
5.0.0-alpha14 33 05/27/2024
5.0.0-alpha11 28 05/27/2024
5.0.0-alpha10 32 05/27/2024
5.0.0-alpha09 25 05/27/2024
5.0.0-alpha08 28 05/27/2024
5.0.0-alpha07 27 05/27/2024
5.0.0-alpha06 34 05/27/2024
5.0.0-alpha05 28 05/27/2024
5.0.0-alpha04 30 05/27/2024
5.0.0-alpha03 28 05/27/2024
5.0.0-alpha02 24 12/07/2024
5.0.0-alpha01 29 12/02/2024
4.15.0 42 05/10/2023
4.14.0 36 05/27/2024
4.13.0 27 05/27/2024
4.12.0 35 05/27/2024
4.11.0 33 05/27/2024
4.10.0 29 05/27/2024
4.9.1 34 05/27/2024
4.9.0 28 12/02/2024
4.8.1 41 05/27/2024
4.8.0 34 05/27/2024
4.8.0-beta02 35 05/27/2024
4.8.0-beta01 25 05/27/2024
4.7.0 33 05/27/2024
4.6.0 38 05/27/2024
4.5.0 31 05/27/2024
4.4.1 34 05/27/2024
3.20.2 28 05/27/2024
3.20.1 31 05/27/2024
3.20.0 29 05/27/2024
3.20.0-beta01 25 05/27/2024
3.19.0 25 05/27/2024
3.18.0 27 05/27/2024
3.17.0 32 05/27/2024
3.16.0 30 05/27/2024
3.15.0 25 12/02/2024
3.14.0-beta03 27 05/27/2024
3.14.0-beta02 26 05/27/2024
3.14.0-beta01 25 05/27/2024
3.13.1 29 05/27/2024
3.13.0 23 05/27/2024
3.12.0 31 05/27/2024
3.11.1 25 05/27/2024
3.11.0 31 05/27/2024
3.10.0 29 05/27/2024
3.9.0 31 05/27/2024
3.8.0 35 05/27/2024
3.7.1 25 12/02/2024
3.7.0 36 05/17/2024
3.6.0 29 05/27/2024
3.5.0 32 05/27/2024
3.4.0 24 05/27/2024
3.3.0 30 05/27/2024
3.3.0-beta2 33 05/27/2024
3.3.0-beta1 29 05/27/2024
3.2.3 30 05/27/2024
3.2.2 29 05/27/2024
3.2.1 29 05/27/2024
3.2.0 33 05/27/2024
3.1.0 30 05/27/2024
3.0.2 33 05/27/2024
3.0.1 32 05/27/2024
3.0.0 33 05/27/2024
3.0.0-beta05 31 05/27/2024
3.0.0-beta04 25 05/27/2024
3.0.0-beta03 25 05/27/2024
3.0.0-beta02 29 05/27/2024
3.0.0-beta01 33 05/27/2024
3.0.0-alpha9 34 05/27/2024
3.0.0-alpha8 29 05/27/2024
3.0.0-alpha7 29 05/27/2024
3.0.0-alpha6 27 05/27/2024
3.0.0-alpha5 29 05/27/2024
2.6.1 30 05/27/2024
2.6.0 32 05/27/2024
2.5.0 34 05/27/2024
2.4.0 34 05/27/2024
2.3.0 39 05/27/2024
2.2.1 29 05/27/2024