MathNet.Numerics.Signed 3.14.0-beta01

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0.

Showing the top 20 packages that depend on MathNet.Numerics.Signed.

Packages Downloads
NPOI
.NET port of Apache POI
8
NPOI
.NET port of Apache POI
12
NPOI
.NET port of Apache POI
18
NPOI
.NET port of Apache POI
43
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
23
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
26
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
27
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
29
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
33
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
34
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
38

FFT: MKL native provider backend. FFT: 2D and multi-dimensional FFT (only supported by MKL provider, managed provider pending). FFT: real conjugate-even FFT (only leveraging symmetry in MKL provider). FFT: managed provider significantly faster on x64. Provider Control: separate Control classes for LA and FFT Providers. Provider Control: avoid internal exceptions on provider discovery. Linear Algebra: dot-power on vectors and matrices, supporting native providers. Linear Algebra: matrix Moore-Penrose pseudo-inverse (SVD backed). Root Finding: extend zero-crossing bracketing in derivative-free algorithms. Window: periodic versions of Hamming, Hann, Cosine and Lanczos windows. Special Functions: more robust GammaLowerRegularizedInv (and Gamma.InvCDF). BUG: ODE Solver: fix bug in Runge-Kutta second order routine ~Ksero

This package has no dependencies.

Version Downloads Last updated
5.0.0 45 12/12/2022
5.0.0-beta02 15 11/29/2024
5.0.0-beta01 25 05/27/2024
5.0.0-alpha16 16 05/27/2024
5.0.0-alpha15 25 05/27/2024
5.0.0-alpha14 24 05/27/2024
5.0.0-alpha11 20 05/27/2024
5.0.0-alpha10 24 05/27/2024
5.0.0-alpha09 20 05/27/2024
5.0.0-alpha08 23 05/27/2024
5.0.0-alpha07 21 05/27/2024
5.0.0-alpha06 25 05/27/2024
5.0.0-alpha05 23 05/27/2024
5.0.0-alpha04 24 05/27/2024
5.0.0-alpha03 21 05/27/2024
5.0.0-alpha02 18 12/07/2024
5.0.0-alpha01 20 12/02/2024
4.15.0 34 05/10/2023
4.14.0 26 05/27/2024
4.13.0 20 05/27/2024
4.12.0 25 05/27/2024
4.11.0 26 05/27/2024
4.10.0 20 05/27/2024
4.9.1 24 05/27/2024
4.9.0 20 12/02/2024
4.8.1 29 05/27/2024
4.8.0 24 05/27/2024
4.8.0-beta02 28 05/27/2024
4.8.0-beta01 21 05/27/2024
4.7.0 27 05/27/2024
4.6.0 29 05/27/2024
4.5.0 23 05/27/2024
4.4.1 25 05/27/2024
3.20.2 21 05/27/2024
3.20.1 24 05/27/2024
3.20.0 22 05/27/2024
3.20.0-beta01 18 05/27/2024
3.19.0 20 05/27/2024
3.18.0 20 05/27/2024
3.17.0 24 05/27/2024
3.16.0 22 05/27/2024
3.15.0 18 12/02/2024
3.14.0-beta03 21 05/27/2024
3.14.0-beta02 19 05/27/2024
3.14.0-beta01 18 05/27/2024
3.13.1 22 05/27/2024
3.13.0 18 05/27/2024
3.12.0 23 05/27/2024
3.11.1 20 05/27/2024
3.11.0 23 05/27/2024
3.10.0 21 05/27/2024
3.9.0 22 05/27/2024
3.8.0 26 05/27/2024
3.7.1 18 12/02/2024
3.7.0 28 05/17/2024
3.6.0 22 05/27/2024
3.5.0 25 05/27/2024
3.4.0 17 05/27/2024
3.3.0 21 05/27/2024
3.3.0-beta2 24 05/27/2024
3.3.0-beta1 21 05/27/2024
3.2.3 22 05/27/2024
3.2.2 22 05/27/2024
3.2.1 21 05/27/2024
3.2.0 27 05/27/2024
3.1.0 24 05/27/2024
3.0.2 26 05/27/2024
3.0.1 22 05/27/2024
3.0.0 26 05/27/2024
3.0.0-beta05 24 05/27/2024
3.0.0-beta04 18 05/27/2024
3.0.0-beta03 17 05/27/2024
3.0.0-beta02 23 05/27/2024
3.0.0-beta01 24 05/27/2024
3.0.0-alpha9 26 05/27/2024
3.0.0-alpha8 20 05/27/2024
3.0.0-alpha7 22 05/27/2024
3.0.0-alpha6 21 05/27/2024
3.0.0-alpha5 21 05/27/2024
2.6.1 24 05/27/2024
2.6.0 23 05/27/2024
2.5.0 25 05/27/2024
2.4.0 25 05/27/2024
2.3.0 32 05/27/2024
2.2.1 22 05/27/2024