MathNet.Numerics.Signed 3.6.0

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0.

Showing the top 20 packages that depend on MathNet.Numerics.Signed.

Packages Downloads
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
2
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
6
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
7
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
9
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
12

Distributions: ChiSquare.CDF more robust for large numbers ~Baltazar Bieniek Linear Algebra: MatrixStorage.Map2 equivalent to VectorStorage.Map2 Linear Algebra: Matrix and Vector Find/Find2, Exists/Exists2, ForAll/ForAll2 Linear Algebra: more consistent range checking in MatrixStorage.Clear and related Linear Algebra: mixed-storage fall back implementations now leverage higher-order functions BUG: Linear Algebra: fix loop range in MatrixStorage.ClearColumns (built-in storage not affected) BUG: Linear Algebra: fix sparse matrix equality. BUG: Linear Algebra: ArgumentException instead of index exception when trying to create an empty matrix. Generate: Unfold, Fibonacci; Normal and Standard replacing Gaussian and Stable. Native Providers: NativeProviderLoader to automatically load the provider for the matching processor architecture (x86, x64) ~Kuan Bartel Native Providers: Control.NativeProviderPath allowing to explicitly declare where to load binaries from. MKL Native Provider: support for native complex eigen-value decomposition ~Marcus Cuda MKL Native Provider: non-convergence checks in singular-value and eigen-value decompositions ~Marcus Cuda

This package has no dependencies.

Version Downloads Last updated
5.0.0 12 12/12/2022
5.0.0-beta02 0 04/03/2022
5.0.0-beta01 5 05/27/2024
5.0.0-alpha16 2 05/27/2024
5.0.0-alpha15 5 05/27/2024
5.0.0-alpha14 1 05/27/2024
5.0.0-alpha11 1 05/27/2024
5.0.0-alpha10 5 05/27/2024
5.0.0-alpha09 1 05/27/2024
5.0.0-alpha08 2 05/27/2024
5.0.0-alpha07 2 05/27/2024
5.0.0-alpha06 4 05/27/2024
5.0.0-alpha05 2 05/27/2024
5.0.0-alpha04 6 05/27/2024
5.0.0-alpha03 1 05/27/2024
5.0.0-alpha02 0 07/11/2021
5.0.0-alpha01 0 06/27/2021
4.15.0 11 05/10/2023
4.14.0 4 05/27/2024
4.13.0 2 05/27/2024
4.12.0 3 05/27/2024
4.11.0 3 05/27/2024
4.10.0 2 05/27/2024
4.9.1 5 05/27/2024
4.9.0 0 10/13/2019
4.8.1 6 05/27/2024
4.8.0 4 05/27/2024
4.8.0-beta02 5 05/27/2024
4.8.0-beta01 2 05/27/2024
4.7.0 4 05/27/2024
4.6.0 6 05/27/2024
4.5.0 1 05/27/2024
4.4.1 4 05/27/2024
3.20.2 3 05/27/2024
3.20.1 3 05/27/2024
3.20.0 5 05/27/2024
3.20.0-beta01 2 05/27/2024
3.19.0 2 05/27/2024
3.18.0 2 05/27/2024
3.17.0 2 05/27/2024
3.16.0 2 05/27/2024
3.15.0 0 12/27/2016
3.14.0-beta03 1 05/27/2024
3.14.0-beta02 2 05/27/2024
3.14.0-beta01 2 05/27/2024
3.13.1 4 05/27/2024
3.13.0 2 05/27/2024
3.12.0 7 05/27/2024
3.11.1 4 05/27/2024
3.11.0 2 05/27/2024
3.10.0 2 05/27/2024
3.9.0 2 05/27/2024
3.8.0 6 05/27/2024
3.7.1 0 09/21/2015
3.7.0 6 05/17/2024
3.6.0 2 05/27/2024
3.5.0 4 05/27/2024
3.4.0 2 05/27/2024
3.3.0 2 05/27/2024
3.3.0-beta2 2 05/27/2024
3.3.0-beta1 4 05/27/2024
3.2.3 3 05/27/2024
3.2.2 6 05/27/2024
3.2.1 2 05/27/2024
3.2.0 3 05/27/2024
3.1.0 2 05/27/2024
3.0.2 5 05/27/2024
3.0.1 3 05/27/2024
3.0.0 5 05/27/2024
3.0.0-beta05 5 05/27/2024
3.0.0-beta04 4 05/27/2024
3.0.0-beta03 2 05/27/2024
3.0.0-beta02 1 05/27/2024
3.0.0-beta01 2 05/27/2024
3.0.0-alpha9 4 05/27/2024
3.0.0-alpha8 1 05/27/2024
3.0.0-alpha7 2 05/27/2024
3.0.0-alpha6 3 05/27/2024
3.0.0-alpha5 3 05/27/2024
2.6.1 3 05/27/2024
2.6.0 5 05/27/2024
2.5.0 5 05/27/2024
2.4.0 1 05/27/2024
2.3.0 5 05/27/2024
2.2.1 2 05/27/2024