MathNet.Numerics.Signed 3.3.0-beta1

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0.

Showing the top 20 packages that depend on MathNet.Numerics.Signed.

Packages Downloads
NPOI
.NET port of Apache POI
7
NPOI
.NET port of Apache POI
13
NPOI
.NET port of Apache POI
37
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
20
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
22
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
24
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
25
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
26
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
28
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
29

Linear Algebra: Vector.Fold2 (fold2 in F#), storage optimized Linear Algebra: Minor change how matrix products call the LA provider Linear Algebra: Random generation now leveraging array sampling routines Linear Algebra: fix bug when manually assigning System.Random to random distribution Statistics: RootMeanSquare (RMS) Distributions: Array sampling routines now available through interface Distributions: Categorical sampling now explicitly skips p=0 categories Generate: leverage array sampling routines for random data generation Generate: square, triangle and sawtooth waves Distance: Jaccard Index F#: explicitly depend on official FSharp.Core NuGet packages F#: NuGet package with iPython IfSharp F# module integration load script Build: unified build.sh and buildn.sh into combined build.sh Build: use Paket instead of NuGet to maintain NuGet dependencies

This package has no dependencies.

Version Downloads Last updated
5.0.0 41 12/12/2022
5.0.0-beta02 13 11/29/2024
5.0.0-beta01 22 05/27/2024
5.0.0-alpha16 15 05/27/2024
5.0.0-alpha15 23 05/27/2024
5.0.0-alpha14 19 05/27/2024
5.0.0-alpha11 18 05/27/2024
5.0.0-alpha10 20 05/27/2024
5.0.0-alpha09 15 05/27/2024
5.0.0-alpha08 20 05/27/2024
5.0.0-alpha07 18 05/27/2024
5.0.0-alpha06 22 05/27/2024
5.0.0-alpha05 19 05/27/2024
5.0.0-alpha04 22 05/27/2024
5.0.0-alpha03 19 05/27/2024
5.0.0-alpha02 15 12/07/2024
5.0.0-alpha01 18 12/02/2024
4.15.0 32 05/10/2023
4.14.0 23 05/27/2024
4.13.0 17 05/27/2024
4.12.0 23 05/27/2024
4.11.0 22 05/27/2024
4.10.0 17 05/27/2024
4.9.1 21 05/27/2024
4.9.0 17 12/02/2024
4.8.1 26 05/27/2024
4.8.0 22 05/27/2024
4.8.0-beta02 26 05/27/2024
4.8.0-beta01 18 05/27/2024
4.7.0 24 05/27/2024
4.6.0 24 05/27/2024
4.5.0 19 05/27/2024
4.4.1 21 05/27/2024
3.20.2 18 05/27/2024
3.20.1 20 05/27/2024
3.20.0 17 05/27/2024
3.20.0-beta01 15 05/27/2024
3.19.0 17 05/27/2024
3.18.0 15 05/27/2024
3.17.0 21 05/27/2024
3.16.0 18 05/27/2024
3.15.0 14 12/02/2024
3.14.0-beta03 19 05/27/2024
3.14.0-beta02 18 05/27/2024
3.14.0-beta01 16 05/27/2024
3.13.1 20 05/27/2024
3.13.0 16 05/27/2024
3.12.0 19 05/27/2024
3.11.1 18 05/27/2024
3.11.0 20 05/27/2024
3.10.0 18 05/27/2024
3.9.0 18 05/27/2024
3.8.0 23 05/27/2024
3.7.1 15 12/02/2024
3.7.0 23 05/17/2024
3.6.0 18 05/27/2024
3.5.0 21 05/27/2024
3.4.0 14 05/27/2024
3.3.0 17 05/27/2024
3.3.0-beta2 20 05/27/2024
3.3.0-beta1 20 05/27/2024
3.2.3 18 05/27/2024
3.2.2 19 05/27/2024
3.2.1 17 05/27/2024
3.2.0 23 05/27/2024
3.1.0 19 05/27/2024
3.0.2 21 05/27/2024
3.0.1 19 05/27/2024
3.0.0 22 05/27/2024
3.0.0-beta05 22 05/27/2024
3.0.0-beta04 16 05/27/2024
3.0.0-beta03 15 05/27/2024
3.0.0-beta02 19 05/27/2024
3.0.0-beta01 21 05/27/2024
3.0.0-alpha9 23 05/27/2024
3.0.0-alpha8 18 05/27/2024
3.0.0-alpha7 18 05/27/2024
3.0.0-alpha6 18 05/27/2024
3.0.0-alpha5 17 05/27/2024
2.6.1 21 05/27/2024
2.6.0 20 05/27/2024
2.5.0 21 05/27/2024
2.4.0 22 05/27/2024
2.3.0 28 05/27/2024
2.2.1 20 05/27/2024