MathNet.Numerics.Signed 4.7.0

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net Framework 4.0 or higher and .Net Standard 1.3 or higher, on Windows, Linux and Mac. This package contains strong-named assemblies for legacy use cases (not recommended).

Showing the top 20 packages that depend on MathNet.Numerics.Signed.

Packages Downloads
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
2
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
6
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
7
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
9
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
12

Special Functions: Airy functions Ai, Bi ~Jong Hyun Kim Special Functions: Bessel functions of the first and second kind ~Jong Hyun Kim Special Functions: Modified Bessel functions of the first and second kind ~Jong Hyun Kim Special Functions: Spherical Bessel functions of the first and second kind ~Jong Hyun Kim Special Functions: Hankel functions of the first and second kind ~Jong Hyun Kim Special Functions: Kelvin functions of the first and second kind, and derivatives ~Jong Hyun Kim Linear Algebra: optimized sparse implementation of transpose-multiply ~Richard Reader Linear Algebra: optimized range checking in vectors and matrices

.NET Framework 4.0

  • No dependencies.

.NET Framework 4.6.1

  • No dependencies.

.NET Standard 1.3

.NET Standard 2.0

  • No dependencies.

Version Downloads Last updated
5.0.0 12 12/12/2022
5.0.0-beta02 0 04/03/2022
5.0.0-beta01 5 05/27/2024
5.0.0-alpha16 2 05/27/2024
5.0.0-alpha15 5 05/27/2024
5.0.0-alpha14 1 05/27/2024
5.0.0-alpha11 1 05/27/2024
5.0.0-alpha10 5 05/27/2024
5.0.0-alpha09 1 05/27/2024
5.0.0-alpha08 2 05/27/2024
5.0.0-alpha07 2 05/27/2024
5.0.0-alpha06 4 05/27/2024
5.0.0-alpha05 2 05/27/2024
5.0.0-alpha04 6 05/27/2024
5.0.0-alpha03 1 05/27/2024
5.0.0-alpha02 0 07/11/2021
5.0.0-alpha01 0 06/27/2021
4.15.0 11 05/10/2023
4.14.0 4 05/27/2024
4.13.0 2 05/27/2024
4.12.0 3 05/27/2024
4.11.0 3 05/27/2024
4.10.0 2 05/27/2024
4.9.1 5 05/27/2024
4.9.0 0 10/13/2019
4.8.1 6 05/27/2024
4.8.0 4 05/27/2024
4.8.0-beta02 5 05/27/2024
4.8.0-beta01 2 05/27/2024
4.7.0 4 05/27/2024
4.6.0 6 05/27/2024
4.5.0 1 05/27/2024
4.4.1 4 05/27/2024
3.20.2 3 05/27/2024
3.20.1 3 05/27/2024
3.20.0 5 05/27/2024
3.20.0-beta01 2 05/27/2024
3.19.0 2 05/27/2024
3.18.0 2 05/27/2024
3.17.0 2 05/27/2024
3.16.0 2 05/27/2024
3.15.0 0 12/27/2016
3.14.0-beta03 1 05/27/2024
3.14.0-beta02 2 05/27/2024
3.14.0-beta01 2 05/27/2024
3.13.1 4 05/27/2024
3.13.0 2 05/27/2024
3.12.0 7 05/27/2024
3.11.1 4 05/27/2024
3.11.0 2 05/27/2024
3.10.0 2 05/27/2024
3.9.0 2 05/27/2024
3.8.0 6 05/27/2024
3.7.1 0 09/21/2015
3.7.0 6 05/17/2024
3.6.0 2 05/27/2024
3.5.0 4 05/27/2024
3.4.0 2 05/27/2024
3.3.0 2 05/27/2024
3.3.0-beta2 2 05/27/2024
3.3.0-beta1 4 05/27/2024
3.2.3 3 05/27/2024
3.2.2 6 05/27/2024
3.2.1 2 05/27/2024
3.2.0 3 05/27/2024
3.1.0 2 05/27/2024
3.0.2 5 05/27/2024
3.0.1 3 05/27/2024
3.0.0 5 05/27/2024
3.0.0-beta05 5 05/27/2024
3.0.0-beta04 4 05/27/2024
3.0.0-beta03 2 05/27/2024
3.0.0-beta02 1 05/27/2024
3.0.0-beta01 2 05/27/2024
3.0.0-alpha9 4 05/27/2024
3.0.0-alpha8 1 05/27/2024
3.0.0-alpha7 2 05/27/2024
3.0.0-alpha6 3 05/27/2024
3.0.0-alpha5 3 05/27/2024
2.6.1 3 05/27/2024
2.6.0 5 05/27/2024
2.5.0 5 05/27/2024
2.4.0 1 05/27/2024
2.3.0 5 05/27/2024
2.2.1 2 05/27/2024